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Abstract

We consider the topological Hochschild homology (THH) of a group ring R[G], and calculate
the restriction map (or transfer) associated with a subgroup K C G of finitc index in terms
of ordinary group homology transfers. This gives information on the corresponding restriction
map in Quillen’s K-theory via the topological Dennis trace tr:K(R[G])— THH(R[G]). More
generally, we consider group rings for “rings up to homotopy™ (FSP’s) and calculate the THH-
restriction map in terms of transfers in gencralized homology theories. (©) 1998 Elsevier Science
B.V. All rights reserved.

AMS Classification: Primary: 19D99, 55R12; secondary: 19D10

0. Introduction

One possible way to study Quillens algebraic K-theory K(R) of a ring R, is to con-
sider its relationship with the topological Hochschild homology THH(R) as defined by
Bokstedt, see [5] or [13]. The latter is a topological version of the ordinary Hochschild
homology, and the topological Dennis trace is a natural map

tr: K(R)— THH(R).

This is a non-trivial invariant. By a theorem of Dundas and McCarthy [8], the stable
K-theory of R is equivalent 10 THH(R).

For a discrete group G and a subgroup K of finite index, there is an inclusion of
group rings R[K]— R[G], and a corresponding restriction map (or transfer)

Res: K(R[G]) — K(R[K]).
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The construction is simple: The inclusion of rings R[G] — Endgx(R[G]) induced from
the left multiplication of G on R[G] gives a map on K-theory, and the restriction map
is induced from this by Morita equivalence. (A choice of coset representatives provides
an R[K]-basis for R[G].) Though easy to define, the K-theoretical restriction map has
proved hard to analyze effectively. However, there is a corresponding restriction map
in topological Hochschild homology, and a commutative diagram

K(R[G]) —— THH(R[G])

Res Res (0])
K(RIK]) —— THH(R[K]).

In this paper, we describe completely the behavior of the THH-restriction map on
homotopy groups in terms of the well-known transfers in ordinary group homol-
ogy, cf. [7, 3.9]. Let (G) denote the conjugacy classes of G, and for w € (G) write
Cg(w) to mean the centralizer of ¢ in G for some representative ¢ € . (This is
independent of the choice of ¢ up to isomorphism.) We also write n; = n{THH(R)),
and consider it as a trivial Cg(w)-module. With this notation we
have

n( THHR[G]) = €D @D HACo(w), 7,

me(Gy i=0

and similarly,

7,(THH(RIK])) = € €D Hi Cx(2). m,-0).

JE(K) i=0

This gives a corresponding decomposition Res, = (P, ; Res;,, where

Res(’;‘) = erIB Resi,,[ : GHB Hi(CG((’) ), i) — GB H,(CK()), Ty—i).

i=0 i=0 i—0

Theorem A. Let we (G) and Le (K).

(i) If 7 Z w then Res’ =0.

(ii) If AC w then for any k€ A we may take Co(w)= Cg(k) and Cx(A)= Ci(K),
and Res’ is then the usual transfer in group homology corresponding to the inclusion

)

Ck (k) — Co(k).

A similar description of the restriction map in ordinary Hochschild homology has
been given by Bentzen and Madsen, cf. [4].
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The homotopy groups of THH(R) are not known in general but, for example,

Z for 1=0,
7(THH(Z))=< 0 for i=2j, j>1,
Z/jz for i=2j—1, j>1.

More generally, Lindenstrauss and Madsen have calculated the homotopy groups of
THH(R) when R is the integers in a finite extension of the rationals, see [11].

In fact, we shall work in the more general context of “rings up to homotopy”, or,
in Bokstedts formulation, functors with smash products (FSPs). For L any FSP, one
can define the algebraic K-theory K(L), cf. [6, 5.4]. This construction generalizes both
Quillens K-theory for discrete rings, and Waldhausens A-theory of spaces. (In the latter
case A(X) is obtained from the FSP associated with the monoid of Moore loops on
X.) Similarly, the topological Hochschild homology is defined for every FSP L. We
also have a notion of group rings in the context of FSP’s, and as in the linear case
we have restriction maps and a diagram like 0.1 with R replaced by L.

The main problem in analyzing the THH-restriction map comes from the fact
that there is no trace map tr: THH(M,L)— THH(L) inducing Morita equivalence. The
standard proof of Morita equivalence (by an argument originally due to
Waldhausen [18, Section 6]) consists in producing a new space which maps to both
THH(M,L) and THH(L) by equivalences. However, the lack of an explicit map is
inconvenient (to say at least) for calculational purposes. We shall remedy this by con-
structing a new model THH" (L) of topological Hochschild homology, together with
an explicit trace map equivalence

tr: THH* (M,L) — THH"*(L).

This map 1s formally very similar to the trace inducing Morita equivalence in ordinary
Hochschild homology, cf. [12, 1.2.1]. We construct THH"(L) by fusing Bokstedts
model of THH(L) with the I'" construction of Barratt and Eccles [3]. In this way we
get a space equivalent to THH(L), but with an enriched combinatorial structure so as
to make the construction of the trace map possible.

In formulating the results on the restriction map for general FSPs, it is convenient to
work in the stable category of spectra. (In this paper a spectrum £ is simply a sequence
of spaces E, together with maps S' AE, — E,, ). In fact, THH(L) and THH"(L) are
the spaces in degree zero of spectra we denote by TH(L) and TH*' (L), respectively,
and all the maps in 0.1 are maps of spectra. Recall (e.g. from [2]) that to any spec-
trum £ there is an associated homology theory denoted Ex. The general procedure for
constructing the transfer in Ex-theory of an n-sheeted covering X — 4 consists in first
producing a transfer map of suspension spectra

trf: 24, ) — 22X, )

(this 1s described in detail in [1, Section 5]), and then smash this map with the spectrum
E. On homotopy groups there results a map Ex(A)— Ex(X).
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Returning to the restriction map, we prove in Propostion 4.3 the existens of a com-
mutative diagram of spectra:

Res

THY(L[G]) TH*(L[K])

~
Vid A Res,|

\/ TH(L)AZ®(BCo(w).) \/ TH(L)AZ=(BCk(1):),
WE(G) FE(K)

with the vertical maps being equivalences. In this diagram
Res,,: 2(BCq(), ) — Z™(BCx(4)+)

is defined using the Barratt—Eccles model of the suspension spectrum, cf. (4.5). The
general result then reads as follows.

Theorem B. Let w € (G) and 7€ (K).
() If A w then Rxeéi)z*.

(i) If ACw and k€ L then R\cs:, is the transfer corresponding to the covering
BCx(x)— BCg(k) (take BCx(x)=EC;(x)/Cx(i)).

We prove this in Proposition 6.2. In fact, Theorem A follows from Theorem B, since
in the special case where L is a discrete ring R, TH(R) is a generalized Eilenberg—
MacLane spectrum. Therefore TH(R)«-theory reduces to ordinary homology with co-
efficients in the homotopy groups of TH(R).

For simplicity we work non-equivariantly in this paper, but in fact the maps involved
are all cyclic maps. Therefore, the ideas presented here can also be used to study the
restriction map on the fixed-points corresponding to the action of a finite cyclic group,
and in this way we get information on the restriction map in TC. This program will
be carried out in [16].

Finally, a short comment on notation. We have chosen the term restriction map
for the “wrong way” map in topological Hochschild homology. The natural map
TH(L[K]) — TH(L[G]) induced from the inclusion K C G should then be called the in-
duction map. This terminology is in accordance with the usual definitions in
K-theory and group homology, but it differs from that of [13]. Thus, the “induction
map” appearing in [13, 5.1.14] corresponds to our restriction map.

1. Pointed monoids and traces

In this paper we shall work in the category of pointed simplicial sets Simp,. This
seems to be the most natural choice, since the mathematics involved will generally



C. Schiichtkrulll Journal of Pure and Applicd Algebra 133 (1998) 289-316 293

be of a combinatorial nature. However, the constructions are all very natural, and if
the reader prefers to do so he can interpret everything in terms of topological spaces.
In fact, we shall allow ourselves to use topological language such as spaces and sub-
spaces even though we work simplicially. We say that a map f: X — Y of simplicial
sets is a homotopy equivalence if this is the case for the topological realization, and
similarly for homology.

As motivation for the construction of THH' in the next section, let us first see how
to define the trace of a matrix with entries in a pointed monoid, assuming that at most
one entry in each column is different from the basepoint.

Definition 1.1. A pointed monoid (11,1, ) is a pointed set IT with a pointed associa-
tive multiplication p: [T A Il —II and a two-sided unit 1€ [7.

Example 1.2, (1) If M is an ordinary monoid one gets a pointed monoid M, by
adding a disjoint basepoint.

(2) Let R be a ring. Then by forgetting the additive structure R becomes a pointed
monoid with basepoint 0.

Given a pointed monoid [I, we construct the cyclic nerve N (IT) in analogy with
the construction of the Hochschild complex, with smash substituted for tensor products.
(For the general theory of cyclic sets, see eg. [12, Ch. 7].)

NS U =,
do N Ty —=NT . (), 0<y<i,
du(xos . x))=( .., pu(xp, Xep 1)), 0<v<i— 1,

a’,-(x(),. ..,x,-) = (,ll(.\’,-,,ro)....,x,',] ).

s NS (I = N2 (D), 0<v<i, (D
Se(X0y X ) = (Xos X X w1 X0 ),

NS D) = N2,

L(X0s e 0 X)) = (X0, X002 X ).

Let M,(IT) denote the multiplicative monoid of » X n matrices with entries in [],
such that each column has at most one entry different from the basepoint, or in other
words

M,(ITYy=Map,([n].[nIATT), [n]={0,....n}.

This is again a pointed monoid and we may thus consider N7Y(M,(1)). We want to
define trace maps in this situation, analogous to the linear case of Hochschild homology,
where we have a trace map

tr: Z(M,(R)) — Z(R),

w0 @@= YAl e ea L AT =(a)). (1.2)

JOwn i



294 C. Schlichtkrull | Journal of Pure and Applied Algebra 133 (1998) 289-316

Here Z(R) denotes the Hochschild complex associated with the ring R, t.e. Z;(R)=
R®U*1) with the usual cyclic structure maps, cf. (1.1). In the case of a pointed monoid
I1 we shall define

tr :NX (M, (11)) — I (NZ (1)) (1.3)

where I't is the Barratt—Eccles functor (which for connected X gives a simplicial
model for Q>*°2>(X)).

We first explain tr in simplicial degree zero. Given (a;;) € M, (I) we consider the
string of elements

(@i1)j1)s -+ s Gomjoy) € T

where 1 <j(1)<--- <j(m)<n and ajjs) F *.
In simplicial degree one, we have ((a})).(a;;)) € M,(IT) AM,(IT). In view of (1.2)
it is natural to consider the set
S= {(alol /'u’a_l'lojw ) elAIl: a./ol_/n ?é *, a_]'loj\ 7& *}

. . . 0 . .
To each jy there is at mlost one ji with (& ;.a;,)€S and similarly for each j, at

most one j; with (a;)ll-o,a/-“il)ES. By using either the natural ordering of the jy’s or
the ji’s we thus get two different ways of ordering the elements in S, and we must
take both orderings into account in order to get a cyclic map. To do this we proceed

as follows. First, we choose an arbitrary ordering of the elements in S:

_ 0 1 0 1
S =), 13700 Gioc1yj (1)) -+ (@i myjotmy> Gty ) -

Let X, be the group of permutations of the set m={1,...,m}, and let ap, %, € X, be
determined by the order of the jy(s)’s and ji(s)’s, respectively,

Jolag () < - <ol ' (m)), (e () <o <i(ay (m)).

X, acts from the right on each coordinate in X2 and from the right on (I1 A IT)" by
permuting the coordinates. We then define

0 1 . [} 1 0 1
tr((a;; ), (a;)) = [0, 210 @, (1o 1) Dot 1)) - > (@ myjogm)s Djgtmyjs(m) )]

€ X% <y, (TN

m

One can check that this is independent of the ordering of S.

Let us now recall the definition of the functor I'" due to Barratt and Eccles [3].
We let n={1,...,n} and write .#(m,n) for the set of all strictly increasing maps from
m to n. For 6 € X, and « € .#(m,n) the composite g is not necessarily strictly increas-
ing, but there is a unique morphism ox(x) € .#(m,n) such that ox(2)(m)=ocx(m)Cn.

Definition 1.3. For « €.#(m,n) define the restriction map «*: %, — Z,, by commuta-
tivity of the diagram:
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Tala)
m ———I.

It is easy to see that (af)* = f*a* for x€.#(m,n) and fc.#(l,m).
Definition 1.4. For a based simplicial set X there is a right action of £, on X" given by

(X1, X0)0 = (Xg(1)s -+ Xg(m) )-

In the same manner a morphism x €.#(m,n) induces a map o™ : X" — X" by letting
a*(xl,...,x,,):(xl(l),...,xi(,,,,).

Given X € X" we say that x is entire for x if +* only misses the basepoint, i.e. i ¢ 2(m)

implies x; = *.

Let E be the functor from sets to cyclic sets given by
EX: [i]— Map([i, X)=X""", (1.4)
for any set X. Explicitly, we have the simplicial structure maps
di(xp,....x)=(..., X0, ...),
Sy(x0,s o X)) =0 X, Xy e )
and the cyclic operators
L(X0y o X ) = (X1, X0, e ey Xim) ).

This is a contractible simplicial set for all X. In particular, E applies to a discrete
group G and gives a space EG with a free right G-action defined by component wise
multiplication. Notice also that the restriction map (Definition 1.3) extends to a cyclic
map 2*:EX, — EZX,, using the functoriality of E.

For X a pointed simplicial set we have the bisimplicial set

WX )= H EX, x X", (1.5)

m>0

where X" denotes the diagonal simplicial set in the multisimplicial cartesian product
of X with itself m times. Consider the following relations on #(X):

(a) (e,x)~(co,xg) forecEZ,, xeX" and 0 €%,

(b) (e,x) ~ (2 c,a®x) for c€EZX,, x€X"™ and x€.#(m,n) entire for x.
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Definition 1.5 (Barratt and Eccles [3]). The bisimplicial set I'*(X) has (i,j) sim-
plices

+ I
I—; Xi = H E:'Zm X X/‘m/ ~,
m>0

where ~ is the equivalence relation generated by (a) and (b).

The elements in 'Y (X) are denoted [¢; x] for c€ Z0F! and x € X/". In the following,

m .
we shall often consider I'"(X) as a simplicial set by restricting to the diagonal.

Lemma 1.6. I't maps cyclic sets 1o cyclic sets.

Proof. For a cyclic set X we give EX, x X", the obvious structure of a bicyclie set.
This structure is compatible with (a) and (b) in Definition 1.5, and by restriction to
the diagonal we thus get an endofunctor I'" on the category of cyclic sets. [

We are now ready to define the trace map (1.3). Assume that we are given an
element (4°,...,4") e NI (M, (IT)). Let

S = {(j(),...,j,-)en[+l :a;?‘j“ #* *,‘..,clj’-"”‘_»/’ % %}

and assume that S has cardinality m. We choose an ordering of S, that is a bijective
map p=(pg,....p;):m—S. The maps p, are all injective, and for v=0,...,7 we let
a7 € X, be the ordering of m induced from the inclusion in n by p,:

Py (1) < oo < (| (m).
Then, we define

tr(A%,..., A"y =[a;a(l),...,a(m)] € TN (1)), (1.6)
()

i
/’y(")l’()(\')’.'.Tal)r—l(\')l’r("))'
The crucial observation is that tr(4°,...,4%) is independent of the ordering of S,

and given this it is easy to prove the following.

where o = (ag,...,%;) and a(v)=(a

Proposition 1.7. The trace map
tr N (M, (1)) — T "(NR (1))
is a map of cyclic sets.
There are inclusions M, (I1)— M, (1) obtained by adding a (n + 1)’s row and

column consisting of basepoints alone. The trace is compatible with these inclusions,
and we get an induced map

tr:NZ (Moo (IT)) — TH(NZ (1)),
where M (IT)= lim M,(IT).
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2. The topological Hochschild spectrum

We first recall the definition of THH as given by Marcel Bokstedt. For further details
see [5] or [13]. As in the original paper by Bokstedt we shall work in the simplicial
category. Thus, a functor with smash product (an FSP) L is a functor from the
category of pointed simplicial sets to itself together with natural transformations

1: X —L(X) the unit,

(2.1)
HIL(X)ANL(Y Y= L(X AY) the multiplication.

These are supposed to satisty the obvious associativity and unital conditions and to be
compatible with the stabilization map

oy X AL(Y) = LXAY).

Furthermore, we shall always assume an FSP to be connected, in the sense that there
exists a constant ¢ such that the maps

Sl /\L(S")—/'L(S’H])

are (2n — c¢)-connected.

Example 2.1. Let G be a discrete group. The group FSP G is given on objects by
G(X)=X NG, and has structure maps

1:X—>XAG,, 1(x)=(x,1).

id A
WXAGLAYAG: SXAYAGXG)y — X AY AG,,

where m is multiplication in G.

Example 2.2. The matrix FSP M, has M,(X)=Map,([n],[n]AX) where [n]=
{0,...,n} is given the basepoint 0.

1Y — M (X), I(x)(s) = (s,x),
WM (X)YAM(Y)—M(XAY),
. g FAid .
w(fog):n] =AY ——[nIAXANY, [feMJ(X), geM/(Y).
Lemma 2.3. Given FSP’s Ly and L, the composite L\L, has structure maps
12 1h
1:X — Ly(X)— L1 Ly(X),
A L2
10 LiLa(X) AL La(Y) 5 Li(La(X) A Lo(Y)) —— LiLa(X A Y).

Thus given any FSP L we may form new FSPs such as M,L and L[G]:EL.



298 C. Schlichtkrull | Journal of Pure and Applicd Algebra 133 (1998) 289-316
Let .# be the category with objects the finite sets n={1,....n} and morphisms the
injective maps, and consider the functors G,[L,m]: #'"!' — Simp, with
GiL,ml(No, .., m;) = Map,(S™ A -+ AS" L(S™)A--- AL(S"YAS™).

Here Map,(—, —) is the simplicial mapping space, given on simplicial sets X and Y
by sing Map, (|X|,|Y|). We let

THH;(L,m) = hocolim G;[L, m].
i

and make this the i-simplices in a cyclic space THH(L,m) with face and degeneracy
maps induced by the multiplication and unit in L as in (1.1).

Definition 2.4. The topological Hochschild spectrum TH(L) is the simplicial spectrum
given in degree m as THH(L,m) and with spectrum maps induced by the obvious maps
Gi[L,m]AS' — Gi[L,m + 1].

We shall often need the following approximation lemma due to Bokstedt.

Lemma 2.5 (Bokstedt [5, 1.5] and Madsen [13, 2.3.7}). Let L be a connected FSP.
Given k > 0 there exists n > 0 such that

G,{L,m](n,...,n)— THH;(L,m)
is a k-equivalence.
Remark 2.6. For the purpose of this paper it suffices to use a naive notion of a spec-
trum. Thus for us a spectrum E is simply a sequence of pointed simplicial sets £,
together with simplicial maps £, AS' — E, 1. A map of spectra f:£—F is a se-

quence of maps f,,: E, — F, which commutes with the structure maps. The homotopy
groups are defined as m,(£) = lim ;. »(£,) and [ is called a stable weak equivalence

if the induced maps fx:7(E)— m;(F) are isomorphisms.
To construct the new model TH' (L) we first consider the following modification of
the functor G;[L,m]:
G [L,m}(ng,...,n;) =Map(S™ A AS" LT(LS™YA - AL(S™YAS™)).

We then define THH; (L, m)=hocolim,.. G,/ [L,m] and make this into a simplicial
space as before, but now taking the simplicial structure of I'" into account. The ap-
proximation Lemma 2.5 still holds.

Lemma 2.7. Let L be a connected FSP. Given k > 0 there exists n > 0 such that

G/ [L,m](n,...,n)— THH/ (L, m)

is a k-equivalence.
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Definition 2.8. We let TH'(L) be the simplicial spectrum given in degree m as
THH*(L,m) and with spectrum maps induced by the obvious maps
G [L,m]AS' — G [L,m+ 1].
Note that when i is fixed and X is a simplicial set then I'*(X) is a simplicial set

and there is an inclusion

X—=L7X),  xe—[(1.... 1)x]

Lemma 2.9 (Barratt and Eccles {3, Section 6]). Assume that X is (n — 1)-connected
Sor n > 1. Then the inclusion X — IT'X is (2n — 1)-connected.

Lemma 2.10. There is a natural equivalence TH(L) — TH* (L).

Proof. The map in question is induced by the inclusion
LES" YA <« ALSTYAS™ — IF(LS™)A -~ AL(S"YAS™).

It follows from the approximation Lemmas 2.5 and 2.7 and Lemma 2.9 that this gives
a homotopy equivalence THH/(L,m)— THH; (L, m). The result now follows from the
realization lemma for bisimplicial sets. [J

3. Morita equivalence

In this section we construct the trace map tr: TH(M,L)— TH"(L). To show that it
is an equivalence, we introduce an intermediate functor W, that fits in a commutative
diagram

TH(M,(L)) —— TH*(L)

TH(W,(L)) —— TH(L),

and we shall prove that the vertical maps and the lower horizontal map are equiva-
lences.

Definition 3.1. Let #, be the functor on based spaces with W,(X)=[n]AX A[n] and
multiplication

W XOAWAY )= W(XATY),
h=s2 ?é 07

otherwise.

(s1.0, v, 12),
#((S] > X5 )s (S2s Vs [2)) = {
*
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We note that y is associative, and call W, a pre-FSP. We may form G;[W,m] as in
the case of a FSP and define

THH, (W, m) = hocolim G;[W, m].
g

Since W, has no unit there is no degeneracy maps, but we can still make [/]—
THH;(W,m) into a pre-simplicial space, i.e. a simplicial set without degeneracy oper-
ators. We thus get a pre-simplicial spectrum TH(W,), or more generally TH(W, L) for
any FSP L.

If we think of M,(X) as matrices with at most one entry different from zero in each
column, then W,(X) corresponds to matrices with at most one entry different from
zero. There is an inclusion i: W,(X ) — M,(X).

A = 0’
i((5.0.0)):[n) =[] A, «u%nxm{““*’ ust
*

otherwise.

Lemma 3.2. Let L be any FSP. Then i: W, — M, induces an equivalence

i TH(W, L) — TH(M,L).

Proof. As spaces

n 1

%thvadMWhHVK

t=1s=1 (=1 5--1

and 7 is just the inclusion. Since i i1s (2m — 1)-connected when X is (m — 1)-connected
the lemma follows from the approximation Lemma 2.5. 0O

There is a trace map

tI'IVV,,(X())/\"*/\I’VH(X,')——?X()/\-”/\X,',

(X0s .. -sXi), if tg=2s1,....4; =S¢, 311%0, (3.1
tr((S(),X(), t())»' v 9('5‘1'“\,1" tl)) -

* otherwise.

This map induces a natural transformation tr: G;[ W, L,m] — G;[L,m] and it is easy to
see that there is an induced map of spectra

tr: TH(W, L) — TH(L).
As in the linear case there also is a map in the other direction.
Definition 3.3. inc:/ — W, is the map of pre-FSP’s given by

inc: X — W,(X), inc(x)={(l,x,1).

We again get a map of spectra inc: TH(L) — TH(W, L) and we have the following.
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Lemma 3.4, tr: TH(W, L) — TH(L) is an equivalence of spectra with homotopy in-
verse the inclusion (Definition 3.3).

Proof. It is obvious that troinc is the identity on THH(L,m). Thus to show that tr is
a homotopy equivalence, it suffices to show that ||inc o tr|| is a homotopy equivalence
on ||THH(W, L,m)||. (We use || — || to mean the realization of a pre-simplicial space,
cf. [17, Appendix].) Since THH(W, L, m) is simply connected when m > 2 it is enough
to show that [/inc ctr|| induces an isomorphism on homology. For this purpose we can
adapt the pre-simplicial homotopy from the linear case [12, 1.2.4] to the topological
setting. Define natural transformations

h Wy L(Xo) A - AWLL(XG)

— W L(X0)A - AWLXG)AWLSO)A -+ AWLIX), 0 <v <

h\'((sowxoa fo )v e (Sl'ﬂxl'# tl))

(5020, D)o (L DL TR, £), (Sy 1 Xog s o 1)n o1 (S5 X0 1))
= if ty=s1,....0_1 =5, all;éO,
+  otherwise.
Here u € SY is the element different from the basepoint.

As in the construction of the degeneracy maps in THH we get induced maps
hy : THH(W,L,m)— THH,,(W,L,m) by using the functorial properties of hocolim.
It is now elementary though tedious to check that this is a pre-simplicial homotopy (in
the sense of {12, 1.0.8]) from id to incotr.

To finish the proof, we recall that the homology of ||[THH(W,L,m)|| can be cal-
culated using the chain complex (ZxTHH(W,L,m),> (—1)"d,x) associated with the
pre-simplicial space THH(W,L,m). Then hA=3 (—1)"#x is a chain homotopy from
the identity to incx otrx. [

We next construct a natural transformation
tr: My(Xo)A - AMUX)— LKA - AKX, (3.2)

analogous to the trace map of cyclic nerves discussed in Section 1. Substituting L(X.)
for X, in (3.2), this natural transformation will then induce the trace map tr: TH(M,L)—
TH*(L).

First note that as [#]=nU {x}, there is an inclusion

M,(X)=Map,([n].[n] AX)—Map(n xn,X),  f—(fy).

If we interpret basepoints as zero elements the inclusion of the product u(f,g)€
M,(X AY) can be written as

R0 =D (fings) EX Y.
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We proceed as in (1.6). Given (fV...., /)€ M (X)) A - AM(X;), we let
S={or..jyen ™ [0 Fw S F )

Choose some arbitrary ordering of S, p={(pg,...,p;):m—.S, and for v=0,...,i let
o, € X, be determined by

P\'(ay_l(l))< t <,()\'(1:1(m))-
We then define
tr(f”,...,f"):[a;f(l),...,f(m)]e[;*(X()/\ < AXD, (3.3)

N D y
where a = (2,...,%), and f(v)=( ey S )

We leave it for the reader to check that this is independent of the ordering of S,
and that tr is simplicial in Xj,....X;.
There are natural “face” maps

do i My(Xo) A -+ AM(X) — My(X) A - AMU(Xe A Xy ) A <= AM(X),
di I XA - AXD) = L5 (XA - AMXGAX G DA - AX))
for v=0,...,i — 1, and

di i My(Xo) A - AM(X;) = My(Xi AXoYA - - AM(Xir),
df LN XgA - AXD) = T (G AXgA - AXi).

Similarly, we have “degeneracies”,

S\‘:MI(XO)/\ /\Mi(/\/i)_'MJ(X())/\ o /\Mn(X\')/\Mn(SO)/\ /\Mn(/\/i)a
sTILT XA - AXD) S L (XA - AXGASTA - AKX

and “cyclic” operators
i Mu(Xo) A - AM(XD) — My(X) A MUK A - AM(Xi1),

G0N - AXD) = LG AXGA - AXior).

Lemma 3.5. The trace map (3.2) satisfies d otr =trod,, s} otr=tros, and t;f otr =
trot; for v=0,...,1I.

Theorem 3.6. The natural transformation tr from (3.2) induces a cyclic map
tr: THH(M, L, m) — THH (L, m).
This is a homotopy equivalence, giving a degree-wise equivalence of spectra

tr: TH(M,L)— TH' (L).



C. Schlichtkrull | Journal of Pure and Applied Algebra 133 (1998) 289-316 303

Proof. From Lemma 3.5, it follows easily that tr is a cyclic map. To see that it is
a homotopy equivalence note that we have a commutative diagram of pre-simplicial
spaces

THH(M, (L), m) ——~THH" (L, m)

THH(W,(L),m) ———~ THH(L,m).

From Lemmas 3.2, 3.4 and 2.10 we know that the other three arrows induces a ho-
motopy equivalence after pre-simplicial realization. Therefore, the same holds for the
trace map. By [17, Appendix] the quotient map

X ) = 1X1

is a homotopy equivalence when X is a good simplicial space. In our case the simplicial
spaces comes as realizations of pre-simplicial sets, and since all simplicial spaces arising
in this way are good, the result follows. [J

Remark 3.7. We can use the monadic structure of I
w: I r'x)y—-rtx), I3,3.5]

to obtain a trace map equivalence THH (M, L) — THH*'(L). This is nice from a formal
point of view, but of no importance for the calculations we are after.

4. The restriction map in TH*
Let G be a discrete group, K C G a subgroup with finite index in G and choose
a set of representatives for the left cosets
G/K={nK,...,7.K}. (4.1)

There is a left action of G on G/K and a group element o € G gives rise to two
functions

Jj(e):[nl —[n], and &:[n]— K, (4.2)
by the requirement that oy, =7 6))5(5).
Definition 4.1, i*: G — M,K is the map of FSP’s defined by
ii(x,0):[n] — [MIAX AK,, s— (j(0)s),x,6(s)).
By composing with Morita equivalence we get the restriction map

Res: TH(L[G]) — TH(M,(L[K])) — TH(L[K]). (4.3)



304 C. Schlichtkrull | Journal of Pure and Applied Algebra 133 (1998) 289-316

I next have to discuss smash products of spectra. Since we are working in a “naive”
category of (pre)spectra, we shall also use an ad hoc construction of the smash product,
cf. [2, Section 4]. First define two functions 2, §: N — N as follows:

a(n)={{xreN:x¢2N; x<n}|,
pn)=|{xeN:x€2N; x < n}|.

Notice that a(rn) + fi(n)=n for all n. For spectra E and F we then define the smash
product EAF as having (EAF), = Ey,) A Fyy. and structure maps

E1(11) A F/g(,,) A Sl - Ea((n) A F/f(n)+1 - El(,,,; 1) A F/f(nH) for ne€ 2N
Ez(n) A F/i(n) ASI - E'z(n) AS] A F/{(n) - Ez(n)q ! A F/)’(n) = EZ(I1+I) A F/f(nJrl)

for n ¢ 2N,

For a simplicial set X let 27(X) denote the suspension spectrum of X, that is
2¥X )y =X AS". Also define I'"2>°(X) to be the spectrum with I'"2>(X),=TI"
(X AS") and with the obvious structure maps. Notice that by Lemma 2.9 there is
a stable equivalence Z>(X)— I'' 2> (X).

Lemma 4.2. There are stable equivalences of spectra
TH(L) A Z*(NZ(G+)) = TH(LIGD),
TH(I)ATTE(NY(K)) ~ THY(LIK]).

Proof. We concentrate on the second equivalence since the proof of the first is similar.
In degree x(n) + f(n) the equivalence is induced by the composite map

Mapy (8™ A -+ AS"L(S™YA - ALS")AS ) ALF(NT (K ) ASH)
— Map,(S™ A - ASTUL(S™YA - ALSTYAST ALT(NG (K ) ASPY)
— Map,(S™ A - AS" LHLS™ YA - AL(S"YANT (K ) A STy,

Here we permute the coordinates in S*"*A" 5o as to get a map of spectra.

Now the first map is (2x(n)+f3(n)—1)-connected and the second is (a(n)+2H(n)—1)-
connected, and so the composite map is approximately (x(n) + 2f3(n) — 1)-connected.
By the approximation Lemma 2.7 this also holds for the induced map

THH(L, a(m)) A TN (K ) ASPD Yy o THH(LIK ], 2(n) + B(n)).
By the realization lemma for simplicial spaces [18, 2.1.1] we thus get a map of spectra
TH(I)ATTE (NS (K, ) — THY(L[K])

which in degree «(n) + f(n) is approximately (x(n) + 2f(n) — 1)-connected. It is
therefore a stable equivalence. [
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Now consider G, as a pointed monoid in the sense of Section 1. Using the trace
map (1.6), we get a map of pointed monoids, similar to the restriction map (4.3):

Res: N (G4 )~ N (MUK ) = TTINS (KL).

For future reference we give an explicit formula for this map. Given ¢ =(ay,...,d;)
in G’ (simplicial degree i) we introduce the notation

a[v,f]{”‘”'“"’f forOsvs<i . (4.4)

1 for v>i

Let S={sen:(e[0,/])s)==s} and define p €.#(m,n) by the condition that p(m)=
S Cn. We have the restriction map p* from 1.6 and we let a, = p*(j(o[v+1,i]))€ X,
for v=0...., i. Then

Res(6) = [(Hon- - % ) (¥iae- o ¥u)] € IFINT (KL )), (4.5)
where
Yo = (Go(j(a[ L, i)(p(s))). 61 (a2, 7]} p(s)))s- ... Gi(p(s))).

The stabilization of Res is a map of spectra TX(NY(G. ))— I EZ®(NY(K,)), which
we also denote by Res. Explicitly this is given in degree n as

Res:NY (G, )AS" — THINY (K, ) AS" — THNY(K ) A S™),

and it is casy to check the following.

Proposition 4.3. There is a conmutative diagram of spectra, where the vertical maps
are the equivalences from Lemma 4.2.

TH(L[G]) Res TH*(L[K])

12
1

TH(L) A S°(NS (G ) — 2R TH(L) A TZR(NY (K, ))

5. Simplicial transfers
To each n-sheeted covering p: £ — B of topological spaces there is a stable transfer
rf: 27(By) — 2>(F,), see [1]. Indeed. consider the associated X,-principal bundle
PEY={(xi.....x,) EE" : p(x;) = p(x,), Xy £ x, for s £1}.

There is a X, equivariant map into the universal X,-bundle P(E)— EX,. uniquely
determined up to equivariant homotopy. The inclusion P(£) — £ is also X, equivariant,
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so we have the equivariant map P(E)— EX, x £”. Since P(£)/X, = B we may consider
the composite

B=P(E)/S, —EZ, xy E" > EZ, x5, O(E, Y -2 Q(E, ).

the operad action of 4. on Q(£, )= lim "X"(E,) (for the definition of operads see

Here we have taken as a model for EX, the space of # little cubes € .(n), and @ is

[14]). The transfer is then the adjoint of the above map.
We shall need a simplicial analogue of this. Given a map of simplicial sets p: X — 4
and an element a € A,, we may form the pullback:

X —x

Afm] —"—4,
where a: A{m]— 4 is the characteristic simplicial map with a(1,)=a.

Definition 5.1 (Lamotke [10]). Let Z be a discrete set. The map p is called a simpli-
cial covering with fiber Z if for every a € 4 there is a simplicial isomorphism 4 such
that the diagram

Alm)x Z —— &*x

commutes. If |Z| =n then p is called an n-sheeted covering.

For example, if a discrete group G acts freely on a simplicial set X and K C G is
a subgroup with |G/K| = n, then the quotient map X/K — X/G is an n-sheeted covering.
A principal G bundle is a covering of the form X — X/G.

To an n-sheeted covering p:X — A there is an associated principal X, bundle
P(X)— A, constructed degree-wise:

P(X )y = {(x1,...,x,)EX0: p(x,)= p(x;),and x, #x, for s#£1}.

It is easy to check that P(X)C X" is a simplicial subset, and that 2, acts freely on
P(X ) with quotient P(X)/2, = 4.

Recall from 1.8 the functor £ from sets to simplicial sets. For IT a discrete group
this induces a functor from [7-sets to simplicial IT-sets by introducing the diagonal
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action on E.X = X!, Let Dy be the functor from simplicial [T-sets to [I-sets, which
projects on simplicial degree zero.

Lemma 5.2. E is right adjoint to Dy in the sense that there is a natural bijection of
hom sets

I1-Sets(Xy, Y )= IT-Simp(X,EY)
for every simplicial IT-set X and every IT-set Y.
Proof. Given a /1 map fy: Xy, — Y we get the unique extension to a simplicial I7 map
fi:Xi —E;Y by letting
Si(x)=(fox(0),.... fox(i)), (5.1)
where x€X;, and x: 4[i] - X. O
One advantage of the simplicial approach to the transfer is that the classifying map

into EX, becomes very explicit. Given a X, principal bundle P, a choice of represen-
tatives {v;} for the Z, orbits of Py gives a X, equivariant map

i Py= H 02, — 2, ro(vie)=a,

which by Lemma 5.2 then has a unique extension to a 2, equivariant simplicial map
4:P—EZX,. Furthermore, two different choices of representatives give homotopic maps.
Indeed, we obtain an equivariant simplicial homotopy P x A[1] — EZX, by extending the
map already given in degree zero: Py x {(0),(1)} — X,.

Returning to the principal bundle P(X') — 4 we thus get an equivariant map P(X)—
EX,. which is well-defined up to equivariant simplicial homotopy. Of course the in-
clusion P(X')— X" is also 2, equivariant, and so we may form the composite

AXP(X)/Z, —EZ, x5, X" —EX, x5, (X)) — (X)) (5.2)
The last map is simply induced from the inclusion

EZ, x (X.)" — J] EZy x (xoym.

m>0
Definition 5.3. The stable transfer
trf 1 XA, ) — XX,
is the stabilization of (5.2). Explicitly, we have in degree m:

uf A, AS" =TT (X )AS" = THX,. AS™).

It follows from the above discussion that the transfer (Definition 5.3) only depends
on an ordering of each fiber of the map in simplicial degree zero Xy — Ay, and transfers
corresponding to different orderings are related by a simplicial homotopy.
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Remark 5.4. Since I't(Z) is only a model for Q(7) when Z is connected, we should
really map to the group completion I'(Z), [3. Section 4]. However, since ' (Z) — I'(Z)
is a homotopy equivalence when Z is connected the corresponding maps of spectra
becomes equivalent. As in Remark 3.7 we could use the monadic structure of I'"
to get a transfer ['tX°(4,)— [""2>(X,), but again this is not important for our
purposes.

We shall later need to know how the transfer behaves with respect to disjoint unions
of coverings. First assume that we have an n-shected covering

pP=pi HPzIXI HXZ — A HAZ

that comes as the disjoint union of n-sheeted coverings p, and p,. Then the transfer
applies to give a commutative diagram of spectra:

ZR(Ay 1)V ER(dyy ) —E L PEERO(X ) V THE® (X )

(5.3)

12
b4

°(4,) ut I*(X,).

(Of course, we have to make coherent choices.)
Next assume that p; : X; — A arc coverings for /= 1,2, and let

p={p.p}:X HXzﬂA

be the corresponding (7, + ny)-shected covering. The transfer applies to give a com-
mutative diagram of spectra:

trf

S(4,) r*Z®(X,)
~ (5.4)
oA )X iz k) x THE(Xy, ).
Finally, let

Yy —X

B-— 1 .4

be a pullback diagram of n-sheeted coverings. There results a commutative diagram of
spectra:
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trf
2X(BL)—— IT2(Yy)

>y rirxy (5.5)

trf
2%A )= T2 (X))

Lemma 5.4. Let p: X — A be a simplicial n-sheeted covering. Then the realization
|pl:|X] — |A] is a topological covering, and the usual transfer 2°°(|1X | 1) — 27(|4]4)
is equivalent to the redlization of the above simplicial transfer.

Proof. For the fact that |P|:|X|— |4] is a covering see e.g. [10, Ch. 3]. To compare
the two definition of the transfer we shall use the theory of operads as developed in
[14]. First, I'" can be interpreted as the monad corresponding to the operad consisting
of the spaces |EZ,|, see [14, 15.1]. There is an action of [EZ,| on | (X)|=T"(JX.])
and it is easy to see that the composite

|A] = P(IX|)/Z, — [EZ,| xy, TH(X]) — T (1X]5)

is precisely the realization of (5.2). Let C.. be the monad corresponding to the little
cubes operad % ... Then the usual transfer is the adjoint to the map
|[A| =2 P(IX])/Z) — b oc(n) x5, |X|"
%o (n) x5, Coc(|X]2)"
— Coc(IX]4) = QUX 1)

To compare the two transfers we form the product of these two operads and consider
the corresponding monads C., x I'", [14, 3.8]. Then we get a commutative diagram

|EZ,| x5, TH(X] Y >IH(X]4)

(

(Foo(n) X |[EZy]) Xz, (Coo X T Y|X |4 )'——(Coo x T*)(|X]4)

Coo(n) Xz, Coo(|X ]+ — Coo(IX1+).

By [14, Proposition A.2] the vertical maps are weak homotopy equivalences and the
lemma follows. O
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The next example relates our simplicial transfer with the usual transfer in singular
homology. It also illustrates a recurrent theme in this paper: in a non-commutative
context the right combinatorial substitute for summation is linear ordering.

Example 5.5. Let p:X — 4 be an n-sheeted covering of topological spaces, and con-
sider the induced n-sheeted simplicial covering sin X — sin 4. The construction of the
transfer requires an ordering of each fiber in the map of sets sing X — sing 4, and the
outcome is a map

uf: I (sind,)— I'"(sin X, ).

(Here we use the monadic structure of I'.) On the other hand, we have the usual
transfer in singular homology. This is represented by a simplicial map

trf : Z(sinA4) — Z(sin X'},

obtained by lifting singular chains in A4 to singular chains in X, cf. [1, Section 5].
These two transfers are related by the commutative diagram

rf
H(sind,) —— I (sinX, )

Z(sind) —"— Z(sin X).

where the vertical maps are the Hurewicz homomorphisms, induced from the projection
EX, x sinX" — sin X" — Z(sin X).

Let us now consider the n-sheeted covering p:X/K — X/G, where G is a discrete
group that acts freely on X, and K C G is a subgroup of index n. The classifying
map P(X/K)— EX, is constructed after choice of representatives for each X, orbit in
Po(X/K), or what amounts to the same, choice of a specific ordering of each fiber of
the projection Xo/K — X,/G. This amounts to

(1) Choice of coset representatives for G/K (as in (4.1)).

(ii) Choice of a point r(xG) € xG, i.e. of a map r: Xy, — Xy, constant on G orbits.
These data determine an ordering of the fiber over xG € X,/G, namely

7 Gy = {r(x)nK, . r(x)K )
The choice in (i1) gives a map g: X, — G by letting
r(x)qg(x)=x, x€Xo. (5.6)

In degree zero Ay : Py — X, then has Ag(xy K, ...,x7,K) = jg(x), for x € Xy, where jg(x)
is given by the G action on G/K, cf. 4.2. Now it follows from (5.1) that the transfer
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trf : X/G — I''(X/K ) is explicitly given by

trf(xG) =[(jgx(0)...., jgx(1)); (niK,....x3K)], x€X. (5.7)

6. Calculation of the restriction map in terms of transfers

As in Section 4 consider an index n subgroup K C G. In this section we prove The-
orems A and B from the introduction by comparing the combinatorial descriptions of
the restriction and transfer maps given in Sections 4 and 3, respectively. The proof is
in two steps. Firstly, we reduce the problem to the study of the transfer corresponding
to the covering EG xg G* S EG xg G, where G acts on G* =G by conjugation.
Secondly, we decompose EG x G* into components and get a corresponding decom-
position of the transfer.

We let

trf :EG x G5 — I'(EG xx G%)

be the (simplicial) transfer of the covering EG xx G* —EG x¢ G*. Our choice of
coset representatives G/K = {y,K,...,7,K} determines a K equivariant map

fo:G=T]nk—K folyk)=k
and by Lemma 5.2 a K-equivariant simplicial map
f:EG—EK, f(oo,....0:)=(fo{00),-.., fo(d:)).
Combining with the projection

¢ foroeck,

G - K+’ g .
+ otherwise,

we get a map
k:EG xx G - EK xg K,

and we want to compare the composite I " (x) o trf with the restriction map
Res=troi*:NY(G,)— ' (NY(K),)

from (4.5). Let ¢:N(G)— EG x G be the simplicial isomorphism given by
d(e)=(a[l,i],5[2.1],...,a[i,i], 1.4[0,i])c. (6.1)

where we use the notation (4.4). Its inverse is

-1 -1 —1 —1
¢~ ((6,2)g)= (0,20, ,000, ,...,0;_10; ).
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Proposition 6.1. The diagram

EG x G¥ ¢ NY(G),
trf i
I (EG xg G¥¢) NY(Mi(K 1))
I (x) tr

¢ )

I'*(EK xx K3) FH(NY(K), ).

is commutative.

Proof. We keep the notation from the last paragraph in Section 5, and let
riEoG x G —EyG x G™, (6o, 2)=(1,39z0, ).

Then r is constant on G orbits, and the map ¢:EyG x G¥ — G with g(69,z) =0y
satisties r(0g,z)q(09.2) =(00.2). ct. (5.6). By (5.7)

trf : EG x G2 — I' (EG xx G)
13 given by
trf((6,2)c) =1(J(00), ..., j(0: ), X1s. ., Xy,
where ¢ =(0p,...,0;) and
Xy = (G0Vys- s O ¥ 270 )k € BG xx G*.
Clearly, y,'zy, € K if and only if j(z)(v)=v, cf. (4.2), and
{ (Go(v),....Gi(v),2(v)) for j(z)(v) =,

K( X\') = .
otherwise.

Using the defining relations (4.2), it follows that
r*¢='(eI' k) otrf o p(a) = 1(J(a[1,i]), (612,])s- . 12); (Vis-- . ¥ (6.2)
where

p =

{ (Go(J(ol L iD)(v)), 61 (j(6[2,iH()),....ai(v)) for j(a[0,i]}(v) =,

+ otherwise.

We keep o fixed and let S={secm j(a[0,i])(s)=s} with |S|=m. Then define p €
#(m.n) by the condition that p(m)=JS, and let «, = p*(j(a[v+ 11)) for v=0,...,i.
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It follows from (b) in Definition 1.5 that (6.2) is equal to

[(107---sai);(yp(l)’---ayp(m)]a (63)
which is exactly the formula for tr o i¥, cf. (4.5). O

It follows from Proposition 4.3 and 6.1 that to calculate the transfer map in THH
we just have to determine the map

D e« $00 ad +y 00 ad e +300 ad
Res: T(EG xg G™) — [EX(EG xx G) 5 [TE®(EK xx K*),

Let (G) and (K) denote the conjugacy classes of K and G, respectively. The decom-
positions

\/ ZX(EG xg w,) = EX(EG xg G)
we(G)

IX%(EK xx K*) > H I'E®(EK xg A4) (weak product), (6.4)
AE(K)

induce a decomposition of Res into maps

Res! : Z®(EG x¢ wy ) — TYE(EK xx /4 ). (6.5)
We now prove Theorem B from the introduction.
Theorem 6.2. Let w € (G) and i€ (K).

(1) If 7 & o then ﬁ?sé:*.
(i) If AC w then for any x € A there is a commutative diagram

/

IX(EG x¢ wy) — TYE(EK xx /y)

R
12

I(BCG(x):) —— FTE®(BCk(x), ).

where the vertical maps are equivalences, and the lower horizontal map is the transfer
corresponding to the inclusion of centralizers Cg(x)— Cg(x).

Proof. Let trf,, be the transfer of the covering EG xx @« — EG X w. By (5.3) there
is a commutative diagram
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\/ I®EGxgw,) — — I¥(EG x; GY)
w€E(G)

\/ uf, trf

\/ TE®(EG xx w) — — ["Z¥(EG xx GI)
WwE(G)

\Vre<e, rEeg

\/ I'EZ(EK xg KNy ) —— TE(EK xg K¥).
we(G)

Now (i) follows from the definition of k. To prove (ii) fet @ € (G) be fixed and
consider the decomposition

EG xx 0= H EG xx /.

where on the right side the union is over all K-conjugacy classes 4 in w. For 2. Cw
choose x € /4 and consider the diagram

EG xg 4 EG xgw

~ o~ (6.6)

EG/Co(x)NK ——— EG/Cg(x).

We see that

EG xx A —EG xgw (6.7)

is a |Ce(x)/Ci(x)N K|-sheeted covering, and we can apply (5.4) to obtain the com-
mutative diagram
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EOO(EG X6 w+)__—:f°°(EG XG w+)
tef [Tt

IE®(EG xx o) —=—— [ T'Z®EG xk 44)

1€G6M K
A1Cw
=g, proj

I*I=(EK xx KNo)—— [ FEZ%EG xg Ay ).

1€(K)
ACw

Thus for A€ (K) satisfying A C o, Res/, is the transfer associated with the covering

w

(6.7), and (5.5) applied to the diagram in (6.6) gives the commutative diagram

IXEG x¢ wy) — THE®(EK xg A4 )

1

EX(EG/Co(x)s) — s [*EX(EG/C(x)s ).

Since EG/Cg(x) and EG/Ck(x) are models for BC;(x) and BCk(x), respectively, we
have proved (ii). O
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